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The Levy diffusion processes are a form of nonordinary statistical mechanics resting, however, on the
conventional Markov property. As a consequence of this, their dynamic derivation is possible provided that
a source of randomness is present in the corresponding microscopic dynami@s #relconsequent process
of memory erasure is properly taken into account by the theoretical treati8d0i63-651X99)04812-9

PACS numbes): 05.40.Fb, 02.56-r, 05.60—k

I. INTRODUCTION B. From the probabilistic to the dynamic approach

. . The dynamic approach, whose precise meaning will be
The theoretical treatment of anomalous diffusion, namelyyis.,ssed in Sec. 1 C, is still somewhat obscure due to some

giffusic_)n pdr%:es.,ses .either fa'sterf' OIEJ slls)wer tharr: (Xdinal‘l%onflicting aspects of the recent theoretical derivations used
krownlan ' L:cSIOH, 'Z.f?n active fie g riseg_rftlf - A Wl realize this goal. This is so, in spite of the fact that the
hown C"’}SE 0 supe; : _Ifjﬁ'on |sdg|ven ¥tde : uilon p.ro'explicit adoption of techniques derived by the random walk
cesses of Ley type [1]. The reader can find an exhaustive o a1 re yields a satisfactory derivation of the processes of
discussion of the recent literature on this subject in excellenlt_évy diffusion from within the theoretical framework of
rewewy papers{'2—5]. However, we would like to d'raw the probabilistic treatmentf7,8,4,9. The purpose of this paper
re.aders.attentlon also to some key papers of the'llterature O4 that of affording a unified perspective with no internal
this subject[6-18. We plan to adopt a dynamicl9,20 ., nadictions. Here we limit ourselves to pointing out some

rather than a probabilistic approa¢B-18. To make the 5,045 of the Ly walk method which must be retained by
significance of this purpose more transparent, it is convenier{he dynamic approach

to compare what we mean lgjynamicto the conventional First of all, as was made clear by the work of Klafter and

proba}bilistic treatment, either resting on thevielight or Zumofen[17] and Zumofen and Kiaftef18] (see also the

the Levy walk method. report of Klafter, Zumofen, and Schlesindé&i), we have to

point out that the process of i diffusion can be derived

] i from within a dynamic perspective if the so-calledwye
Both the Levy flight and the Ley walk method are based walk view is adopted. This means a trajectory moving with

on a totally probabilistic treatment. The \eflight method  constant velocity along a straight line for an extended time

is based on the assumption that at regular time intervals and from time to time making abrupt direction changes. The

space transition of arbitrarily large intensity might taketime of sojourn in one of these straight paths is characterized

place. With the Ley walk, on the contrary, the jumps over py the probability density function

larger distances take place in larger times. This property

makes these processes non-Markovian and consequently the (u—1)TH 1

derivation of Ly diffusion more delicate than from within P(t)= T (1)

the Levy flight perspective. This is easily realized, for in- ( )

stance, by using the continuous time random-walk formalism

[6,14] and expressing the time evolution for the probability where T/(u—2) denotes the mean waiting time. The

that the particle is at a given space location at a given timgenormalization-group method, as illustrated by Zaslavsky

by means of the equivalent generalized master equation, s¢21], affords a reliable way of fixing the time asymptotic

also[15,16. It is then easily seen that the case where thdorm of Eq. (1) and, notably, the power index in terms of

waiting time distribution is characterized by a finite time the rescaling properties of the fractal region at the border

scale yields immediately a Markov process in the long-timebetween chaotic sea and stability islands. The theorem of

limit, and the anomalous diffusion properties only depend orKac [22] ensures that the first moment #(t) is finite. This

the long-range nature of the displacement per step distribiimportant theorem refers to the distribution of the Poincare

tion. In Sec. Il of this paper we shall study a physical con-recurrence times under the crucial condition that the system

dition of the same kind. Some special attention has to b&nder study is ergodic. Zaslavsk21] noticed that when a

devoted therefore to the kg walk condition, since it shares stability island is imbedded within the chaotic sea, the distri-

with the dynamic approactsee Sec. | C for a more precise bution of Poincareecurrence times becomes equivalent to

definition of this approadha long-time memory, which has the distribution of the times of sojourn at the border between

to be properly erased to establish in the long-time limit thechaotic sea and stability island. This is so because a trajec-

conditions for Ley statistics. tory moving from a given small portion of the chaotic sea

A. Lévy flight and Lévy walk
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through a fast diffusion process arrives at the fractal region=u—2. The region of interest for us is that in which the first
and it sticks to it for an extended time before returning to themoment of(t) is finite (so as to fit the Kac theorenand
departure region. Thus, in full accordance with the Kac theothe second moment is divergent so as to prevent the system
rem, the renormalization-group theory yields>2, thereby  from falling in the attraction basin of the central limit theo-
insuring that the first moment of this distribution is fipite, rem. Consequenﬂy' we restrict our ana|ysis to the interval
and consequently that also the distribution of the Poincarg < g3<1. Note that Eq(2) is exact(see[25]) if the assump-
recurrence times is finite. . tion is made that the time interval between the transition
We note that all this supports the asymptotic form of Ed.from one to the other velocity state is instantaneous. To help
(1) leaving, though, the impression that its short-time StUCthe reader to understand the main conclusion of this paper
ture is arbitrary. Itis not so. As proved in a recent w2g], we have also to make another preliminary remark. The cor-'

the whole structure of Eq1) is dictated by the principle of . . . . . ]
entropy maximization provided that the entropy used is tha[elatlon fu_nctlonde(t) IS a st.atlonary prp_pe_rt{/lQ],_lmpIy .
Ing the existence of an invariant, or equilibrium, distribution.

of Tsallis[24] rather than the conventional Gibbs-Shannon A genuinely dynamic approach to thé \yeprocesses, con-

entropy. Note that the explicit form of Eql) that we are *. it th di ion behind th h
using is fixed, of course, by both the normalization conditionS'Stént With the ergodic assumption behind the Kac theorem,

and the condition that the first moment is finite and that itsMPlies that this equilibrium distribution is established by a

value isT/(x—2). In conclusion, the form of Eqd) is a smgle_ trajectory, prO\_/lded that this tra]e(_:t(_)ry runs for an

unique analytical expression determined by the joint use ofinlimited amount of time. The lack of a finite microscopic

dynamics, renormalization-group technique, and entropy. time scale makes this condition difficult to realize in prac-
We hope that with no sacrifice of the most important in-tice, and it is probably one of the sources of the conflicting

gredients behind the dynamic derivation of thevyaliffu-  Vviews that will be discussed in this paper.

sion process, we can restrict our investigation to the one-

dimensional case. In this condition the role of deterministic

and dynamical generator of the \nediffusion can be prop- C. The dynamic approach
erly played by the intermittent maj25] used by Zumofen . o
and Klafter[18] and by Klafter and Zumofefl7]. This is a The general program of the dynamic approach to statisti-

map with the same algorithmic complexity as the Mannevillecal mechanics is illustrated in a series of recent paj8s
map[26], the complexity of which has been studied by Gas-31]. We are very close to the program of Ré8&1]. The
pard and Wang27] by means of the Kolmogorov-Sinai en- ambitious purpose of these authors is to derive an important
tropy. equation such as the Fokker-Planck equation without using

In the Hamiltonian model of Zavslasky, the derivation of any statistical assumption whatsoever, so as to reverse the
the diffusion processes of g rests on the microcanonical ordinary path from thermodynamics to statistical mechanics.
conditions. This means that the kinetic energy of the flightin other words, the path to follow moves from dynamics and
process is fixed. Consequently, the one-dimensional versiofeaches the level of statistical mechanics using only deter-
of this Hamiltonian perspective yields the important propertyministic randomness with no recourse to thermodynamics,
that only two velocity states exist, one with velocityand  thjs peing the last step, stemming from the dynamically gen-
one with velocity —W. As a consequence of the one- grated statistical equilibrium distributions.
d|men3|0_nal assumption, therefore, we are allowed to use the The authors 0f20] adopted the same perspective to move
key relation[25] from dynamics to [ey statistics. The authors of Ref20]

w2 (= found that the density distributionr(x,t) of the variablex
D (t)= ?f (t'—t)y(t")dt’, 2) drlven'by a process described by Ef) obeys the equation
t of motion[20]

which is equivalent to ) | i
T d? E‘T(X’t):<§2>foq’§(t’)ﬁo(x,t—t’)dt’. @
(1) = m@q)g(t). 3)

Equationg2) and(3) relate to one another the physical prop- Within the context of a dynamic approach to thevizgro-
erties ¢(t) and ®,(t). The former propertyy(t), is the cesses, this equation should be given special attention, since
probability density function of sojourn times, which, as ear-no explicit use of probabilistic arguments was made to derive
lier stressed, has an inverse power-law fgs®e Eq(1)]; the it [20]. However, no general solution of it is available, and
latter, @ .(t), is the stationary correlation function of the di- the emergence of the kg diffusion out of it rests on an
chotomous variable, playing the role of a velocity with approximation which has been questiori&a,33: Different

only two possible valueslV and —W. The functiond(t) is  approximations to the solution of E¢4) lead to different
determined by the statistical properties of the velocity of thestatistical processes. The interested reader is referred to the
paths moving with constant velocity and without changingwork of Ref.[20] for the derivation of Eq(4). Here we limit
direction. We note that E(q3) establishes tha§(t) is pro- ourselves to noticing that this equation is exact under the
portional to the second-order time derivative of the functioncondition that the velocity variable is dichotomous and the
d(t), thereby implying, as a consequence of Eb), that initial distribution is a Diracs centered ak=0. Thus, there

for t—c the decay ofd(t) is proportional to 1P with B is an intimate relation between E@®) and Eq.(4).



PRE 60 LEVY DIFFUSION AS AN EFFECT OF SPORAME . . . 6437

D. Purpose and outline of the paper

p t (=
The main purpose of this paper is that of stressing that the EU(X't):JOdt f,x'((x_x =)o (X t)dx’, (9

intimate connection between E®) and Eq.(4) does not

leave room for a solution implying a memory infinitely ex- where
tended in time. In other words, we want to prove that the
adoption of a Markovian perspective, although apparently
incompatible with the time convolution of E¢}), is dictated

by the steady action of the randomness corresponding to the

transition from one state to the other of variable velocity.gnd (x,t) denotes the probability for the particle to make a
Consequently, the Markov structure emerging from &).  jump by a distance at timet. This equation is very general
according to the prescriptions 0] cannot be misconstrued 5nq is expected to be compatible with the description of
as an undue approximation. This is rather an ingenuous wayign\y non-Markovian processes such as that corresponding
of establishing a physical condition fitting the result of any,"eq (4) with the nonintegrable correlation function gener-
earlier, and crucial, research work. Gaspard and Wag ated by Eqs(1) and (2). The intimate connection between

prove that in the long-time limit, the Manneville map be- X . : .
comes equivalent to the Bernouilli shift map. This is a con-t.hese two equations will be discussed in Sec. IV. Here we

sequence of the fact that the repeated exit and reentering in{'&mt ourselv_es to stressing that the a_symp_tonc regime of
the laminar region results in a memory erasure. As we shaﬂr(x'.t).' as given by Eq(5), can pe studied W'thom making
see, this is the main reason why the final state is as Marko§*Plicitly the Markov approximation. In fact, using the prop-
as a genuine L process must be. erty that this equation is convolutgd in both space and time
In other words, we plan to make randomness emerge frorariables, we get for the Fourier-Laplace transform of
the dynamic approach, resting on E4), so as to render this o(x,t), denoted byr(k,s), the following expression:
dynamic approach equivalent to thévyewalk perspective.
The purpose of this paper is to show that the Markov prop- -
erty necessary to derive the process oty diffusion is not o(k,s)=
arbitrary, but rather corresponds intimately to the nature of
the dynamic process resulting in E¢). This is so because A .
Eg. (4) implies the dichotomous nature of the variakleThe where, of coursex(k,s) denotes the Fourier-Laplace trans-
condition where fot— the decay ofb(t) is proportional form of «(x,t). As pointed out in Sec. |, the dynamic ap-
to 148 with B= u— 2 means that the process is deterministicproac,h to Ley stansqc;s that we are considering is rglated to
for an overwhelming amount of time. There exists an inti-the Levy walk condition. This means that a transition of
mate equivalence between E8), in this physical condition, 'ength |x| implies a timet=[x|/W. In conclusion, we are
and intermittent maps. Randomness shows up only when tHerced to make the following choice far(x,t), with t>0:
trajectory reaches the border between the laminar and chaotic
region[26]. At this crucial stage there are only two possible m(X,t) = (1) 8(|x| = W). )
events, either a jump from the original into the other laminar.

region, corresponding to a distinct velocity state, or thejumpThe authors of Ref|34] studied the asymptotic regime of

back to the original laminar region, namely, the original ve-E9: (7), supplemented by E¢8), searching for the rescaling
locity state[18]. At this stage dynamics are essentially indis- condition

tinguishable from the time evolution of the Bernouilli shift sk 9
map, whose connection with thermodynamics and statistical '

mechanics has been recently clearly illustrated by Zaslavsky;ith »>1. This is a reasonable assumption, since in the

[21]. This means that randomness is a rare event and .it is istmptotic limit the second moment is kno@#] to yield
fact the reason why we have adopted the conceppofadic

randomnessThe main purpose of this paper is that of mak- x~t2H (10)
ing a choice between two distinct ways of solving E4),
based on the criterion that the right solution must reflect thigvith
sporadic randomness.
The outline of this paper is as follows. In Sec. Il we H=1-p/2. (11

review the arguments used in an earlier pdj3di, to derive .
e : On the other hand, the rescaling of Ef) suggests that the
a process of Ley diffusion by means of a generalized maSterconditionaz 1/H might apply, thereby resulting in the prop-

equation. In Sec. Ill, using the calculation illustrated in the o . . ot
Appendix, we show that the same result is derived from £ty a>1, which is essential for the calculations aiming at

master equation which looks like the Markov approximationeStab"Shing_ the exact depende_ncacet_)tb_n B- .
of that of Sec. II. In Sec. IV we review, in the light of the With stralghtf_or\_/vard calculations it IS showB4] that in
perspective established in this paper, the method used in Réﬁe asymptotic limit Eq(7) and Eq.(8) yield

[20] to assign to Eq(4) a Markov structure. Some final a=pB+1 (12)
conclusions are made in Sec. V.

k(X t)=m(X,t)— 8(X) f dx m(x',t) (6)

)

s—x(k,s)’

and
Il. THE GENERALIZED MASTER EQUATION

The first step of our approach rests on the use of the a(k,s)

= : (13)
generalized master equation of Re¥5]. This equation reads s+blk|*
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with regime of the dynamic process described by Ggjinvolves
a process of memory erasure. This paper is devoted to prov-
* am ing that Eq.(4), in spite of its non-Markovian structure,
b=I'(1-a) T (a— 1)00{ 7) (14) yields an asymptotic regime whose statistics are determined
by this process of memory erasure.
Note that this is the Laplace transform of the following equa-
tion of motion:

Ill. THE MARKOV MASTER EQUATION

As pointed out at the end of Sec. Il, the processes of/Le
diffusion are Markovian. Therefore, it is convenient to dis-
cuss their derivation from a Markov master equation. This
This means that the asymptotic regime of the generalizediscussion will serve the useful purpose of proving that the
master equation of Eq5) is a process of diffusion with a master equation is, in a sense, a bridge between the dynamic

%&(k,t)z —b|k|?o(k,t). (15)

genuinely Ley nature[2]. treatment and the diffusion regime. The latter is the subject
We note that Eq(12) means the rescaling, of thermodynamical arguments and the former rests, in the
theoretical picture adopted in this paper, on classical me-

1 chanics. Thus, the master equation can also be regarded as an
H= m (16) important bridge between mechanics and thermodynamics.

In the continuous representation the master equation reads

which is different from that of Eq(11). The difference be- (se€[2], [36], and[34])

tween the two rescalings is a fact of crucial importance de-

serving proper comments. We note that the rescaling of Eq. * , , ,

(11) is somewhat ambiguous since it refers to the dynamics S o= ﬁxK(X_X Jo(x',Hdx’, (17)
of Eq. (7). As pointed out in Ref[20], as well as in the
earlier work of Zumofen and Klaftef18] and Klafter and
Zumofen[17], the diffusion process described by EJ)
consists of a central part and a propagation front signaled by .

two sharp peaks. At tim¢ a particle leaving the origix K(x)=H(x)—5(x)J TI(x")dx’. (18)
=0 att=0 cannot be found at a distance from the origin —o

larger thanwt. This has the effect of producing an accumu-

lation of particles at the front of the diffusion process, As far as the transition probabilith (x) is concerned, we

namely atx=*+W?t. This is the origin of the two ballistic adopt the result of the entropic analysis of R&B]. Thus we
peaks of the propagation front. At earlier times the initial write

distribution, concentrated at=0, splits into these two bal-

listic peaks and the region between the two peaks is empty. 11
Due to the effect of sporadic randomness, some trajectories I(X)== — (
leave the propagation front and the population of the central TW
part steadily increases in time, while the peak intensity, pro-

portional to the correlation functio®,, slowly decreases. with 2<u<3. In fact, the theoretical work of Ref23]
Note that this means that the diffusion process cannot bgroves that the maximization of the Tsallis entr¢@g] with
described by a single rescaling. The peaks of the propagatiaghtropic indexq= 1+ 1/u yields forII an inverse power-law
front rescale withH=1, a fact implying a diffusion faster form with indexu, provided that a transition of lengtR| is
than that predicted by the rescaling of E#jl). The rescaling  supposed to be related to the timby |x|=Wt. The adop-

of the central part is properly expressed by EXf). The  tion of this entropic argument changes Etj7) into
calculations leading to Eq15) refer to a physical condition

where the intensity of the ballistic peaks is negligible, so that

where

_ —yyu—1
m>=(ﬂ 1)TH"WH 19

W (TW-|x|)*

-1 0 ’ ’
the rescaling of Eq(16) only reflects the diffusion properties —a(x,t)= (k= DH(ATW)* f o (X', t)dx
of the distribution central part. On the contrary, the rescaling 9t ' T —o(TWH|x—x'[)2*#
of Eq. (11) is a sort of balance between the fast rescaling of
the propagation front and the rescaling of the central part of * dx’
the distributiono(t), which is in fact slower than the rescal- B f—w(TW+ |X,|)2+,3‘T(X't) ' (20)

ing of Eq. (16). In conclusion, the discrepancy between the
rescaling of Eq(11) and the rescaling of Eq16) reflects the
fact that the derivation of the vg process from within the
Levy walk perspective rests on a deep conflict between th
dynamic properties still present within the \yewalk per- e
s?o/ective gndpa merely pr%babilistic treatme\lﬁé P the process of Ley diffusion of Eq.(15) where the param-
We want to make a further remark, concerning the deri-eterb reads
vation of a Lery process from the generalized master equa-
tion of Eq.(5). We note that the 1y processes are a form of
Markov statistics[1] thereby implying that the asymptotic

whereu =2+ B with 0<B<1. As shown in the Appendix,
éhe Fourier transform analysis of E@Q0) proves that in the
asymptotic regime KW T<1) this equation is equivalent to

(wn*
-

e
b=200<7)1“(1—a) (21
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In other words, we derive a result equivalent to that of Secanalytical solution of Eq(4) can be found, based on the fact
Il. Note that in the limiting casd =0 the term within the that a fractional derivative in time emerges from the right-
square brackets of Eq20) becomes the regularizd®7] hand side of Eq(4) if the correlation functiorb (t), which

form of should fulfill the normalization conditiod(0)=1, is re-
placed by a function like constl. This means a function
+oo 1 , , with the same long-time property as the original correlation
J'wm‘f(x Ddx (22 function, breaking, however, the normalization condition at

t=0. This approximation results in very appealing math-

and, in this sense, coincides with the expression found b§matical properties. In fact, it has the nice effect of resulting

Seshadri and Wed9]. Note that keepingr>0 makes it N @& Process with infinite memory and in an analytical ex-
possible for Eq.(20) to cross the critical conditio8= 1 pression for the effects that this infinitely extended memory

without meeting the divergence corresponding to theyLe has on diffusio_n. The adoption_ of thi; approximation yields
prescription, namely the divergence bfof Eq. (14) at [33] the rescaling of Eq(11). It is straightforward to prove
—2. The result of Eq(20) can be used also to study the that this rescaling can be obtained from the Fourier-Laplace
region 8>1 corresponding to the attraction basin of the or-transform of Eq.(4),

dinary central limit theorem.

2
It is important to observe that the Markovian master equa- 5 (k,s)= (&9 (24)
tion under study here can be derived from the generalized gLRS) = st b (s)kzy
master equation of Eq5) by using the Markov condition: ¢
o o where &Dg(s) is the Laplace transform of the correlation
I(x) = 0 m(x,t")dt. (23 function ® (t). To derive the rescaling of E¢11) we have

to replace in Eq(24) ®4(s) with s?~* (see[38]). This re-
This is an aspect of crucial importance. In fact, EgJ) scaling, however, conflicts with the numerical observation of
yields Eq.(19), showing that the Markov property makes it Ref.[20], which results in a different rescaling, correspond-
possible to establish an important connection between dying to that of Eq.(16). The discussion of Sec. Il sheds light
namics and thermodynamics. The Markov perspectiveon the origin of this rescaling, different from that of Eq1).
adopted in this section is essential to establishing the ket seems to be evident to us that the study of the asymptotic
connection between the structure of EfQ), resulting from  properties of Eq.(24) resting on the limiting condition
the adoption of entropic arguments, and the structure of Eqims_,ogbg(s)zconstx s#~1 loses any dependence on the
(1), generated by the adoption of the renormalization-groufkey parametef, and with it, on the fact that there exists a
arguments, which, in turn, reflect genuinely Hamiltonianropagation front moving with finite velocity. This explains
properties[21]. Note that we refer to Eq23) as aMarkov  \yhy the same method of time asymptotic analysis applied to
conditionrather than as Mquoy apprommatlon"'h_'S 1SS0 Eq.(7) yields the correct rescaling. This is so because in this
because the term “approximation” suggests a given depargase the Ley walk nature of the process under study is re-

ture from the exact solution or, in other words, an eIT0ltqined by the kernek(x,t) due to the wise choice made for
whose intensity must be defined. We see, on the contrar)g,r(x t) in Eq. (8). ’

that the asymptotic regime of E(R0) coincides with that of — —y, conclusion, we are convinced that the solution imply-
Eq. (5) if the latter equation is supplemented by the crucialing the existence of an infinitely extended memory conflicts
condition of Eq.(8), mirroring the dynamics illustrated in the \ith the numerical treatment of the diffusion process result-

Introduction. ing from the fluctuations of the dichotomous variallith
a nonintegrable correlation functioh(t). This is so be-
IV. THE EXACT DIFFUSION EQUATION AND THE cause the steady action of sporadic randomness has the effect
MARKOV REGIME of producing a Markov statistics, although this occurs in the

long-time limit. How can we make the rescaling of the cen-

Is there a connection between E¢) and Eq.(20)? It is o T : .

. . . . tral part of the distributiorr(t) become compatible with the
bt t_hat this connection .WOUld pe established py t_he EXatfect of sporadic randomness and with the predictions of the
act solution of Eq(4) if this yielded, in the asymptotic time

- i - . Lévy-Gnedenko theoremid9] in the long-time limit? The
grgilrtl,te%l ghﬁtusr:gcvggfiiztc}fm%ﬁghgn I:zgétltsglizotr? o?‘eEq most direct way to realize the correct rescaling of the central
(4) is not easy. In the literature we find only solutions of Eq_part of the distribution and to make the Markov property

(4) based on approximatiog0,32,33. In Ref.[20] a solu- emerge is that of assuming that
tion of Eq. (4) was found, with a Markov character, and 1
corresponding to Eq20) with only the first of the two terms a(x,t—t")= _f
between the square brackets on the right-hand side of this 2
equation. In Ref[32] a non-Markov solution has been dis-
cussed, which has been later judged to be the correct solutioks pointed out earlier, if we apply this condition to the term
[33]. on the right-hand side of Eq4), we obtain an equation of
The purpose of this section is that of discussing these twanotion identical to one that would result from EQO) can-
proposed solutions in the light of the sporadic randomnesseling the second of the two terms within the square brackets
illustrated in Sec. I. In the work dB32], it was argued that an of this equation. This interesting result implies some algebra

S(WH —|x—=x"|)o(x",t)dx". (25)
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based on the method of integration by parts and the propesion generator is not quite clear to us.
ties of the delta of Dirac. More details on this calculation can  Should the proof be given that the relaxation of the cor-
be found in Ref[20]. relation function®, can also be determined by statistics as
It is important to point out the physical meaning of the well as by dynamics, with no conflict with the dichotomous
constraint of Eq(25). This means that we imagine a condi- property behind Eq4), we would reach the impressive con-
tion still unaffected by randomness, since this constraintlusion that this exact equation admits two distinct classes of
would be rigorously valid only in the case of merely ballistic solution, determined by the extra information about the
motion. Yet the effect of replacing E@25) into the right-  physical origin of the relaxation process. We are inclined to
hand side of Eq(4) is that of producing a Markov structure believe that the relaxation of a dichotomous variable can
as an effect of carrying out the integration ©nin the time-  only be compatible with the action of a sporadic randomness.
convoluted form of Eq(4). We are convinced that the emer- Thus the emergence of the Markov property at extremely
gence of this Markovian structure is not an artifact of thelong time is a fair reflection of the dynamical processes gen-
approximation of Eq(25). The error associated to this ap- erating the Ley diffusion processes, not to mention the fact
proximation is not the emergence of the Markov structurethat the corresponding rescaling of the central part of the
This error is totally different in nature, and can be easilydistribution fits the results of the numerical calculatig2g].
evaluated. In fact, as repeatedly pointed out earlier, this ap- It is also important to stress that the repeated action of
proximation has the effect of resulting only in the first term randomness is subtly related to the possibility of establishing
on the right-hand side of Eq20). The error associated to a connection between mechanics and thermodynamics also
this approximation is signaled by the breaking of the normin the case, studied in this paper, of apparently infinite

conservation. It is evident, in fact, that the condition memory. The random seed is given by the fact that the du-
ration of the times of sojourn in the laminar region cannot be
% predicted. This is so because of the random injection into the

fﬁwo-(x,t)dx= 1 (26)  |aminar region from the chaotic part of the migs). This is

the reason why we have to introduce probabilistic arguments
is fulfiled by both Egs.(4) and (20) and that in the latter within the dynamical picture of the process under study. This

case this is a consequence of the wise structure of the masfgéalso the reason why, as shown [88], the shape of the

equation of Eq(17). This is the reason why we look at the n;ity distribution of I_Eq(l) can be predicted by using en-
master equation of Eq20) as a natural bridge to cross when tropic arguments, provided that the nonextensive form of en-

moving from the dynamical perspective of E4) to the final tropy advqcated by qulli@4] is used. In other Wf)l’dS,, both
regime of the Ley kind. As noticed in Sec. lll, the emer- the _a(_joptlon of entropic arguments and t_h_e .b'rth obte
gence of this final condition from Eq20) is made by using statistics rest on the emergence of probabilistic aspects gen-

the mathematical approach of the Appendix, which provefrated by a sporadic fo.rm of rgndomne§s.

that the Fourier transform of Eq20) yields the genuine Finally, we are left with t_he Intriguing issue pf the eren—
Lévy process of diffusion of Eq(15). We note that in the dence of all the_se properties on the space dimensions. The
earlier work[20,40 no proper attention was devoted to the treatment of this paper has been confined to the one-

crucial fact that the second term within the square bracket Oﬁilmensmnal case, where the cruc_lal action pf the stab|I|ty_
Eq. (20) is essential for a proper derivation of théviyepro- islands pointed out by the theoretical analysis of Zaslavski
cesses, or of the equivalent fractional derivative. [21] is correctly mirrored by the dichotomous nature of the

fluctuating variablet. We are convinced that the essence of

the present treatment can be extended to the multidimen-
V. CONCLUDING REMARKS sional case, including the more realistic three-dimensional
case. However, we have to recognize that this extension is
not a trivial matter and that further research work has to be
done to settle the technical problems triggered by the two-
H’ind three-dimensional case.

In conclusion, we have provided a convincing demonstra
tion of how to derive Ley processes from within a dynamic
approach. As pointed out in an earlier wddQ], the Levy
process corresponds to a form of fractional calculus whic
can be regarded as a form of macroscopic manifestation of
microscopic randomness. However, it seems to us that frac- APPENDIX
tional derivatives in time have a different meaning from frac-
tional derivatives in space. The choice made by the authors
of Ref.[33] has the effect of relating the solution of Ed) o
to a form of fractional derivative in time. It seems to us that Dle*= e
this choice corresponds to a case where the decay of the a=o I'(n+1—a)
correlation function is not originated by the sporadic action_ o o . )
of randomness on a single trajectory. In this latter case, aghis functlpn is a generallzatlon of f[he'exponentlal functlon.
shown in this paper, to obtain the correct result we are forced turn, this generalized exponential is used to derive the
adopting the trick of Eq(25). The assumption made by the X i
authors of Ref[33], on the contrary, seems to imply that the SinL. x= E.—E,
decay of the correlation function is originated by a statistical “« 21
distribution over a range of initial conditions. Whether or not
this is compatible with the dichotomous nature of the diffu-and

We define the function

an o
=EX. (A1)

(A2)
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EIX+ E—IX

COS, X= 5

(A3)

The corresponding expansions in a power series are

o« X" esin(n—a)w/2]
smax—nz0 Fn+i—a) (Ad)
and
coslx=z x""¢cog§ (n—a)7/2] (A5)

& Th+l-a

Note that the functions defined in EGAL) fulfill the impor-
tant relation

f x*e*dx=T(1+a)e *E*,_,. (AB)

We are now ready to address the problem raised by Eq. _
(20), namely, the evaluation of the Fourier transform of the
function 1/(TW+ |x—x'|)?"#. For this purpose we can use

Eqg. (A6) and we find

t+oo e|kx +oo ikx X
—dX=2ReJ — =f(k).
Jw(a+|x|)2+5 o (a+|x|)tte (k)

(A7)
On the other hand,

f(k)=2f+m

1+ X
0 (a+tx)~"¢

coskx

=2I'(~ )|k

a
X|sin §(1+ a)+|kal

~ v
—S|na(5(1+a)+|ka|

(A8)

wherea=WT and
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sin,|kal

~ o T
sina(§(1+ a)+|kal =CO{§(a+ 1)

+sin

a
E(a+ 1) |cos,|kal.
(A9)

We are interested in the caka—0. Thus we use Eqgs.
(A4), (A5), and (A9) to evaluate the Fourier transform of
interest keeping only the leading vanishing and diverging
terms. We thus obtain

+ o
J dx

~2|k|°T (- a)

explikx)
(at )+

Ta [ Ta
Cco 7 —SINn 7

|ka|27a
I(3—a)

|kal

ka| ™«
INEE)

. (A10)

In conclusion, the Fourier transform of E@QO0) yields

%&(k,t)zc[f(k)—f(O)](}(k,t), (A11)
wheref (k) is given by Eq.(A8) and
:E -1 T(Mfl)W(/rl)—E —1)ax—1
c=7(p-1 =7(p—Da :
(A12)

where u—1=a. After some algebra we find thait(0)
=2/(aa®) and the final coefficient in front of(k,t) is

) ma) . alkal® ) ma) Lo a” e
co 7 (—a) = co 7 ( a)?| | .

T
(A13)

As a final result we get Eq15).
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