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Lévy diffusion as an effect of sporadic randomness
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The Lévy diffusion processes are a form of nonordinary statistical mechanics resting, however, on the
conventional Markov property. As a consequence of this, their dynamic derivation is possible provided that~i!
a source of randomness is present in the corresponding microscopic dynamics and~ii ! the consequent process
of memory erasure is properly taken into account by the theoretical treatment.@S1063-651X~99!04812-6#

PACS number~s!: 05.40.Fb, 02.50.2r, 05.60.2k
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I. INTRODUCTION

The theoretical treatment of anomalous diffusion, nam
diffusion processes either faster or slower than ordin
Brownian diffusion, is an active field of research. A we
known case of superdiffusion is given by the diffusion pr
cesses of Le´vy type @1#. The reader can find an exhaustiv
discussion of the recent literature on this subject in excel
review papers@2–5#. However, we would like to draw the
reader’s attention also to some key papers of the literatur
this subject@6–18#. We plan to adopt a dynamic@19,20#
rather than a probabilistic approach@6–18#. To make the
significance of this purpose more transparent, it is conven
to compare what we mean bydynamicto the conventional
probabilistic treatment, either resting on the Le´vy flight or
the Lévy walk method.

A. Lévy flight and Lévy walk

Both the Lévy flight and the Le´vy walk method are base
on a totally probabilistic treatment. The Le´vy flight method
is based on the assumption that at regular time interva
space transition of arbitrarily large intensity might ta
place. With the Le´vy walk, on the contrary, the jumps ove
larger distances take place in larger times. This prope
makes these processes non-Markovian and consequentl
derivation of Lévy diffusion more delicate than from within
the Lévy flight perspective. This is easily realized, for in
stance, by using the continuous time random-walk formal
@6,14# and expressing the time evolution for the probabil
that the particle is at a given space location at a given t
by means of the equivalent generalized master equation
also @15,16#. It is then easily seen that the case where
waiting time distribution is characterized by a finite tim
scale yields immediately a Markov process in the long-ti
limit, and the anomalous diffusion properties only depend
the long-range nature of the displacement per step distr
tion. In Sec. II of this paper we shall study a physical co
dition of the same kind. Some special attention has to
devoted therefore to the Le´vy walk condition, since it share
with the dynamic approach~see Sec. I C for a more precis
definition of this approach! a long-time memory, which ha
to be properly erased to establish in the long-time limit
conditions for Lévy statistics.
PRE 601063-651X/99/60~6!/6435~8!/$15.00
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B. From the probabilistic to the dynamic approach

The dynamic approach, whose precise meaning will
discussed in Sec. I C, is still somewhat obscure due to s
conflicting aspects of the recent theoretical derivations u
to realize this goal. This is so, in spite of the fact that t
explicit adoption of techniques derived by the random w
literature yields a satisfactory derivation of the processes
Lévy diffusion from within the theoretical framework o
probabilistic treatments@7,8,4,5#. The purpose of this pape
is that of affording a unified perspective with no intern
contradictions. Here we limit ourselves to pointing out som
aspects of the Le´vy walk method which must be retained b
the dynamic approach.

First of all, as was made clear by the work of Klafter a
Zumofen @17# and Zumofen and Klafter@18# ~see also the
report of Klafter, Zumofen, and Schlesinger@5#!, we have to
point out that the process of Le´vy diffusion can be derived
from within a dynamic perspective if the so-called Le´vy
walk view is adopted. This means a trajectory moving w
constant velocity along a straight line for an extended ti
and from time to time making abrupt direction changes. T
time of sojourn in one of these straight paths is characteri
by the probability density function

c~ t !5
~m21!Tm21

~T1t !m
, ~1!

where T/(m22) denotes the mean waiting time. Th
renormalization-group method, as illustrated by Zaslavs
@21#, affords a reliable way of fixing the time asymptot
form of Eq. ~1! and, notably, the power indexm in terms of
the rescaling properties of the fractal region at the bor
between chaotic sea and stability islands. The theorem
Kac @22# ensures that the first moment ofc(t) is finite. This
important theorem refers to the distribution of the Poinc´
recurrence times under the crucial condition that the sys
under study is ergodic. Zaslavsky@21# noticed that when a
stability island is imbedded within the chaotic sea, the dis
bution of Poincare´ recurrence times becomes equivalent
the distribution of the times of sojourn at the border betwe
chaotic sea and stability island. This is so because a tra
tory moving from a given small portion of the chaotic s
6435 © 1999 The American Physical Society
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through a fast diffusion process arrives at the fractal reg
and it sticks to it for an extended time before returning to
departure region. Thus, in full accordance with the Kac th
rem, the renormalization-group theory yieldsm.2, thereby
insuring that the first moment of this distribution is finit
and consequently that also the distribution of the Poinc´
recurrence times is finite.

We note that all this supports the asymptotic form of E
~1! leaving, though, the impression that its short-time str
ture is arbitrary. It is not so. As proved in a recent work@23#,
the whole structure of Eq.~1! is dictated by the principle o
entropy maximization provided that the entropy used is t
of Tsallis @24# rather than the conventional Gibbs-Shann
entropy. Note that the explicit form of Eq.~1! that we are
using is fixed, of course, by both the normalization condit
and the condition that the first moment is finite and that
value isT/(m22). In conclusion, the form of Eq.~1! is a
unique analytical expression determined by the joint use
dynamics, renormalization-group technique, and entropy

We hope that with no sacrifice of the most important
gredients behind the dynamic derivation of the Le´vy diffu-
sion process, we can restrict our investigation to the o
dimensional case. In this condition the role of determinis
and dynamical generator of the Le´vy diffusion can be prop-
erly played by the intermittent map@25# used by Zumofen
and Klafter@18# and by Klafter and Zumofen@17#. This is a
map with the same algorithmic complexity as the Mannev
map@26#, the complexity of which has been studied by Ga
pard and Wang@27# by means of the Kolmogorov-Sinai en
tropy.

In the Hamiltonian model of Zavslasky, the derivation
the diffusion processes of Le´vy rests on the microcanonica
conditions. This means that the kinetic energy of the flig
process is fixed. Consequently, the one-dimensional ver
of this Hamiltonian perspective yields the important prope
that only two velocity states exist, one with velocityW and
one with velocity 2W. As a consequence of the on
dimensional assumption, therefore, we are allowed to use
key relation@25#

Fj~ t !5
m22

T E
t

`

~ t82t !c~ t8!dt8, ~2!

which is equivalent to

c~ t !5
T

m22

d2

dt2
Fj~ t !. ~3!

Equations~2! and~3! relate to one another the physical pro
erties c(t) and Fj(t). The former property,c(t), is the
probability density function of sojourn times, which, as e
lier stressed, has an inverse power-law form@see Eq.~1!#; the
latter,Fj(t), is the stationary correlation function of the d
chotomous variablej, playing the role of a velocity with
only two possible values,W and2W. The functionFj(t) is
determined by the statistical properties of the velocity of
paths moving with constant velocity and without changi
direction. We note that Eq.~3! establishes thatc(t) is pro-
portional to the second-order time derivative of the funct
Fj(t), thereby implying, as a consequence of Eq.~1!, that
for t→` the decay ofFj(t) is proportional to 1/tb with b
n
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5m22. The region of interest for us is that in which the fir
moment ofc(t) is finite ~so as to fit the Kac theorem! and
the second moment is divergent so as to prevent the sys
from falling in the attraction basin of the central limit theo
rem. Consequently, we restrict our analysis to the inter
0,b,1. Note that Eq.~2! is exact~see@25#! if the assump-
tion is made that the time interval between the transit
from one to the other velocity state is instantaneous. To h
the reader to understand the main conclusion of this pa
we have also to make another preliminary remark. The c
relation functionFj(t) is a stationary property@19#, imply-
ing the existence of an invariant, or equilibrium, distributio
A genuinely dynamic approach to the Le´vy processes, con
sistent with the ergodic assumption behind the Kac theor
implies that this equilibrium distribution is established by
single trajectory, provided that this trajectory runs for
unlimited amount of time. The lack of a finite microscop
time scale makes this condition difficult to realize in pra
tice, and it is probably one of the sources of the conflicti
views that will be discussed in this paper.

C. The dynamic approach

The general program of the dynamic approach to stat
cal mechanics is illustrated in a series of recent papers@28–
31#. We are very close to the program of Ref.@31#. The
ambitious purpose of these authors is to derive an impor
equation such as the Fokker-Planck equation without us
any statistical assumption whatsoever, so as to reverse
ordinary path from thermodynamics to statistical mechan
In other words, the path to follow moves from dynamics a
reaches the level of statistical mechanics using only de
ministic randomness with no recourse to thermodynam
this being the last step, stemming from the dynamically g
erated statistical equilibrium distributions.

The authors of@20# adopted the same perspective to mo
from dynamics to Le´vy statistics. The authors of Ref.@20#
found that the density distributions(x,t) of the variablex
driven by a process described by Eq.~2! obeys the equation
of motion @20#

]

]t
s~x,t !5^j2&E

0

t

Fj~ t8!
]2

]x2
s~x,t2t8!dt8. ~4!

Within the context of a dynamic approach to the Le´vy pro-
cesses, this equation should be given special attention, s
no explicit use of probabilistic arguments was made to der
it @20#. However, no general solution of it is available, an
the emergence of the Le´vy diffusion out of it rests on an
approximation which has been questioned@32,33#: Different
approximations to the solution of Eq.~4! lead to different
statistical processes. The interested reader is referred to
work of Ref.@20# for the derivation of Eq.~4!. Here we limit
ourselves to noticing that this equation is exact under
condition that the velocity variable is dichotomous and t
initial distribution is a Diracd centered atx50. Thus, there
is an intimate relation between Eq.~2! and Eq.~4!.
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D. Purpose and outline of the paper

The main purpose of this paper is that of stressing that
intimate connection between Eq.~2! and Eq.~4! does not
leave room for a solution implying a memory infinitely e
tended in time. In other words, we want to prove that
adoption of a Markovian perspective, although apparen
incompatible with the time convolution of Eq.~4!, is dictated
by the steady action of the randomness corresponding to
transition from one state to the other of variable veloci
Consequently, the Markov structure emerging from Eq.~4!
according to the prescriptions of@20# cannot be misconstrue
as an undue approximation. This is rather an ingenuous
of establishing a physical condition fitting the result of
earlier, and crucial, research work. Gaspard and Wang@27#
prove that in the long-time limit, the Manneville map b
comes equivalent to the Bernouilli shift map. This is a co
sequence of the fact that the repeated exit and reentering
the laminar region results in a memory erasure. As we s
see, this is the main reason why the final state is as Mar
as a genuine Le´vy process must be.

In other words, we plan to make randomness emerge f
the dynamic approach, resting on Eq.~4!, so as to render this
dynamic approach equivalent to the Le´vy walk perspective.
The purpose of this paper is to show that the Markov pr
erty necessary to derive the process of Le´vy diffusion is not
arbitrary, but rather corresponds intimately to the nature
the dynamic process resulting in Eq.~4!. This is so because
Eq. ~4! implies the dichotomous nature of the variablej. The
condition where fort→` the decay ofFj(t) is proportional
to 1/tb with b5m22 means that the process is determinis
for an overwhelming amount of time. There exists an in
mate equivalence between Eq.~2!, in this physical condition,
and intermittent maps. Randomness shows up only when
trajectory reaches the border between the laminar and ch
region@26#. At this crucial stage there are only two possib
events, either a jump from the original into the other lamin
region, corresponding to a distinct velocity state, or the ju
back to the original laminar region, namely, the original v
locity state@18#. At this stage dynamics are essentially ind
tinguishable from the time evolution of the Bernouilli sh
map, whose connection with thermodynamics and statist
mechanics has been recently clearly illustrated by Zaslav
@21#. This means that randomness is a rare event and it
fact the reason why we have adopted the concept ofsporadic
randomness. The main purpose of this paper is that of ma
ing a choice between two distinct ways of solving Eq.~4!,
based on the criterion that the right solution must reflect
sporadic randomness.

The outline of this paper is as follows. In Sec. II w
review the arguments used in an earlier paper@34#, to derive
a process of Le´vy diffusion by means of a generalized mas
equation. In Sec. III, using the calculation illustrated in t
Appendix, we show that the same result is derived from
master equation which looks like the Markov approximati
of that of Sec. II. In Sec. IV we review, in the light of th
perspective established in this paper, the method used in
@20# to assign to Eq.~4! a Markov structure. Some fina
conclusions are made in Sec. V.

II. THE GENERALIZED MASTER EQUATION

The first step of our approach rests on the use of
generalized master equation of Ref.@35#. This equation reads
e
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]

]t
s~x,t !5E

0

t

dt8E
2`

`

k~x2x8,t2t8!s~x8,t8!dx8, ~5!

where

k~x,t ![p~x,t !2d~x!E
2`

`

dx8p~x8,t ! ~6!

andp(x,t) denotes the probability for the particle to make
jump by a distancex at time t. This equation is very genera
and is expected to be compatible with the description
highly non-Markovian processes such as that correspon
to Eq. ~4! with the nonintegrable correlation function gene
ated by Eqs.~1! and ~2!. The intimate connection betwee
these two equations will be discussed in Sec. IV. Here
limit ourselves to stressing that the asymptotic regime
s(x,t), as given by Eq.~5!, can be studied without making
explicitly the Markov approximation. In fact, using the pro
erty that this equation is convoluted in both space and t
variables, we get for the Fourier-Laplace transform
s(x,t), denoted byŝ(k,s), the following expression:

ŝ~k,s!5
1

s2k̂~k,s!
, ~7!

where, of course,k̂(k,s) denotes the Fourier-Laplace tran
form of k(x,t). As pointed out in Sec. I, the dynamic ap
proach to Le´vy statistics that we are considering is related
the Lévy walk condition. This means that a transition
length uxu implies a timet5uxu/W. In conclusion, we are
forced to make the following choice forp(x,t), with t.0:

p~x,t !5c~ t !d~ uxu2Wt!. ~8!

The authors of Ref.@34# studied the asymptotic regime o
Eq. ~7!, supplemented by Eq.~8!, searching for the rescaling
condition

s}ka, ~9!

with a.1. This is a reasonable assumption, since in
asymptotic limit the second moment is known@34# to yield

x't2H ~10!

with

H512b/2. ~11!

On the other hand, the rescaling of Eq.~9! suggests that the
conditiona51/H might apply, thereby resulting in the prop
erty a.1, which is essential for the calculations aiming
establishing the exact dependence ofa on b.

With straightforward calculations it is shown@34# that in
the asymptotic limit Eq.~7! and Eq.~8! yield

a5b11 ~12!

and

ŝ~k,s!5
1

s1bukua
, ~13!
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with

b[G~12a!
~WT!a

T
~a21!cosS ap

2 D . ~14!

Note that this is the Laplace transform of the following equ
tion of motion:

]

]t
ŝ~k,t !52bukuaŝ~k,t !. ~15!

This means that the asymptotic regime of the generali
master equation of Eq.~5! is a process of diffusion with a
genuinely Lévy nature@2#.

We note that Eq.~12! means the rescaling,

H5
1

11b
, ~16!

which is different from that of Eq.~11!. The difference be-
tween the two rescalings is a fact of crucial importance
serving proper comments. We note that the rescaling of
~11! is somewhat ambiguous since it refers to the dynam
of Eq. ~7!. As pointed out in Ref.@20#, as well as in the
earlier work of Zumofen and Klafter@18# and Klafter and
Zumofen @17#, the diffusion process described by Eq.~7!
consists of a central part and a propagation front signaled
two sharp peaks. At timet, a particle leaving the originx
50 at t50 cannot be found at a distance from the orig
larger thanWt. This has the effect of producing an accum
lation of particles at the front of the diffusion proces
namely atx56Wt. This is the origin of the two ballistic
peaks of the propagation front. At earlier times the init
distribution, concentrated atx50, splits into these two bal
listic peaks and the region between the two peaks is em
Due to the effect of sporadic randomness, some trajecto
leave the propagation front and the population of the cen
part steadily increases in time, while the peak intensity, p
portional to the correlation functionFj , slowly decreases
Note that this means that the diffusion process cannot
described by a single rescaling. The peaks of the propaga
front rescale withH51, a fact implying a diffusion faste
than that predicted by the rescaling of Eq.~11!. The rescaling
of the central part is properly expressed by Eq.~16!. The
calculations leading to Eq.~15! refer to a physical condition
where the intensity of the ballistic peaks is negligible, so t
the rescaling of Eq.~16! only reflects the diffusion propertie
of the distribution central part. On the contrary, the rescal
of Eq. ~11! is a sort of balance between the fast rescaling
the propagation front and the rescaling of the central par
the distributions(t), which is in fact slower than the resca
ing of Eq. ~16!. In conclusion, the discrepancy between t
rescaling of Eq.~11! and the rescaling of Eq.~16! reflects the
fact that the derivation of the Le´vy process from within the
Lévy walk perspective rests on a deep conflict between
dynamic properties still present within the Le´vy walk per-
spective and a merely probabilistic treatment.

We want to make a further remark, concerning the de
vation of a Lévy process from the generalized master eq
tion of Eq.~5!. We note that the Le´vy processes are a form o
Markov statistics@1# thereby implying that the asymptoti
-
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regime of the dynamic process described by Eq.~5! involves
a process of memory erasure. This paper is devoted to p
ing that Eq. ~4!, in spite of its non-Markovian structure
yields an asymptotic regime whose statistics are determ
by this process of memory erasure.

III. THE MARKOV MASTER EQUATION

As pointed out at the end of Sec. II, the processes of L´vy
diffusion are Markovian. Therefore, it is convenient to d
cuss their derivation from a Markov master equation. T
discussion will serve the useful purpose of proving that
master equation is, in a sense, a bridge between the dyn
treatment and the diffusion regime. The latter is the sub
of thermodynamical arguments and the former rests, in
theoretical picture adopted in this paper, on classical m
chanics. Thus, the master equation can also be regarded
important bridge between mechanics and thermodynam
In the continuous representation the master equation re
~see@2#, @36#, and@34#!

]

]t
s~x,t !5E

2`

`

K~x2x8!s~x8,t !dx8, ~17!

where

K~x!5P~x!2d~x!E
2`

`

P~x8!dx8. ~18!

As far as the transition probabilityP(x) is concerned, we
adopt the result of the entropic analysis of Ref.@23#. Thus we
write

P~x!5
1

T

1

W
cS uxu

W D5
~m21!Tm21Wm21

~TW1uxu!m
, ~19!

with 2,m,3. In fact, the theoretical work of Ref.@23#
proves that the maximization of the Tsallis entropy@24# with
entropic indexq5111/m yields forP an inverse power-law
form with indexm, provided that a transition of lengthuxu is
supposed to be related to the timet by uxu5Wt. The adop-
tion of this entropic argument changes Eq.~17! into

]

]t
s~x,t !5

~m21!~TW!m21

T F E
2`

` s~x8,t !dx8

~TW1ux2x8u!21b

2E
2`

` dx8

~TW1ux8u!21b
s~x,t !G , ~20!

wherem521b with 0,b,1. As shown in the Appendix
the Fourier transform analysis of Eq.~20! proves that in the
asymptotic regime (kWT!1) this equation is equivalent to
the process of Le´vy diffusion of Eq.~15! where the param-
eterb reads

b52 cosS pa

2 DG~12a!
~WT!a

T
. ~21!
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In other words, we derive a result equivalent to that of S
II. Note that in the limiting caseT50 the term within the
square brackets of Eq.~20! becomes the regularized@37#
form of

E
2`

1` 1

ux2x8u21b
s~x8,t !dx8 ~22!

and, in this sense, coincides with the expression found
Seshadri and West@9#. Note that keepingT.0 makes it
possible for Eq.~20! to cross the critical conditionb51
without meeting the divergence corresponding to the Le´vy
prescription, namely the divergence ofb of Eq. ~14! at a
52. The result of Eq.~20! can be used also to study th
regionb.1 corresponding to the attraction basin of the
dinary central limit theorem.

It is important to observe that the Markovian master eq
tion under study here can be derived from the generali
master equation of Eq.~5! by using the Markov condition:

P~x!5E
0

`

p~x,t8!dt8. ~23!

This is an aspect of crucial importance. In fact, Eq.~23!
yields Eq.~19!, showing that the Markov property makes
possible to establish an important connection between
namics and thermodynamics. The Markov perspec
adopted in this section is essential to establishing the
connection between the structure of Eq.~19!, resulting from
the adoption of entropic arguments, and the structure of
~1!, generated by the adoption of the renormalization-gro
arguments, which, in turn, reflect genuinely Hamiltoni
properties@21#. Note that we refer to Eq.~23! as aMarkov
conditionrather than as aMarkov approximation. This is so
because the term ‘‘approximation’’ suggests a given dep
ture from the exact solution or, in other words, an er
whose intensity must be defined. We see, on the contr
that the asymptotic regime of Eq.~20! coincides with that of
Eq. ~5! if the latter equation is supplemented by the cruc
condition of Eq.~8!, mirroring the dynamics illustrated in th
Introduction.

IV. THE EXACT DIFFUSION EQUATION AND THE
MARKOV REGIME

Is there a connection between Eq.~4! and Eq.~20!? It is
evident that this connection would be established by the
act solution of Eq.~4! if this yielded, in the asymptotic time
limit, a diffusion process of the Le´vy kind. It has to be
pointed out, however, that finding an exact solution of E
~4! is not easy. In the literature we find only solutions of E
~4! based on approximations@20,32,33#. In Ref. @20# a solu-
tion of Eq. ~4! was found, with a Markov character, an
corresponding to Eq.~20! with only the first of the two terms
between the square brackets on the right-hand side of
equation. In Ref.@32# a non-Markov solution has been di
cussed, which has been later judged to be the correct solu
@33#.

The purpose of this section is that of discussing these
proposed solutions in the light of the sporadic randomn
illustrated in Sec. I. In the work of@32#, it was argued that an
.

y

-

-
d

y-
e
y

q.
p

r-
r
y,

l

x-

.
.

is

on

o
s

analytical solution of Eq.~4! can be found, based on the fa
that a fractional derivative in time emerges from the rig
hand side of Eq.~4! if the correlation functionFj(t), which
should fulfill the normalization conditionFj(0)51, is re-
placed by a function like const/tb. This means a function
with the same long-time property as the original correlat
function, breaking, however, the normalization condition
t50. This approximation results in very appealing ma
ematical properties. In fact, it has the nice effect of result
in a process with infinite memory and in an analytical e
pression for the effects that this infinitely extended mem
has on diffusion. The adoption of this approximation yiel
@33# the rescaling of Eq.~11!. It is straightforward to prove
that this rescaling can be obtained from the Fourier-Lapl
transform of Eq.~4!,

ŝ~k,s!5
^j2&

s1F̂j~s!k2
, ~24!

where F̂j(s) is the Laplace transform of the correlatio
function Fj(t). To derive the rescaling of Eq.~11! we have

to replace in Eq.~24! F̂j(s) with sb21 ~see@38#!. This re-
scaling, however, conflicts with the numerical observation
Ref. @20#, which results in a different rescaling, correspon
ing to that of Eq.~16!. The discussion of Sec. II sheds ligh
on the origin of this rescaling, different from that of Eq.~11!.
It seems to be evident to us that the study of the asympt
properties of Eq.~24! resting on the limiting condition

lims→0 F̂j(s)5const3sb21 loses any dependence on th
key parameterT, and with it, on the fact that there exists
propagation front moving with finite velocity. This explain
why the same method of time asymptotic analysis applied
Eq. ~7! yields the correct rescaling. This is so because in t
case the Le´vy walk nature of the process under study is r
tained by the kernelk(x,t) due to the wise choice made fo
p(x,t) in Eq. ~8!.

In conclusion, we are convinced that the solution imp
ing the existence of an infinitely extended memory confli
with the numerical treatment of the diffusion process res
ing from the fluctuations of the dichotomous variablej with
a nonintegrable correlation functionFj(t). This is so be-
cause the steady action of sporadic randomness has the e
of producing a Markov statistics, although this occurs in t
long-time limit. How can we make the rescaling of the ce
tral part of the distributions(t) become compatible with the
effect of sporadic randomness and with the predictions of
Lévy-Gnedenko theorem@39# in the long-time limit? The
most direct way to realize the correct rescaling of the cen
part of the distribution and to make the Markov prope
emerge is that of assuming that

s~x,t2t8!5
1

2E2`

`

d~Wt82ux2x8u!s~x8,t !dx8. ~25!

As pointed out earlier, if we apply this condition to the ter
on the right-hand side of Eq.~4!, we obtain an equation o
motion identical to one that would result from Eq.~20! can-
celing the second of the two terms within the square brack
of this equation. This interesting result implies some alge
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based on the method of integration by parts and the pro
ties of the delta of Dirac. More details on this calculation c
be found in Ref.@20#.

It is important to point out the physical meaning of th
constraint of Eq.~25!. This means that we imagine a cond
tion still unaffected by randomness, since this constra
would be rigorously valid only in the case of merely ballis
motion. Yet the effect of replacing Eq.~25! into the right-
hand side of Eq.~4! is that of producing a Markov structur
as an effect of carrying out the integration ont8 in the time-
convoluted form of Eq.~4!. We are convinced that the eme
gence of this Markovian structure is not an artifact of t
approximation of Eq.~25!. The error associated to this ap
proximation is not the emergence of the Markov structu
This error is totally different in nature, and can be eas
evaluated. In fact, as repeatedly pointed out earlier, this
proximation has the effect of resulting only in the first ter
on the right-hand side of Eq.~20!. The error associated t
this approximation is signaled by the breaking of the no
conservation. It is evident, in fact, that the condition

E
2`

`

s~x,t !dx51 ~26!

is fulfilled by both Eqs.~4! and ~20! and that in the latter
case this is a consequence of the wise structure of the m
equation of Eq.~17!. This is the reason why we look at th
master equation of Eq.~20! as a natural bridge to cross whe
moving from the dynamical perspective of Eq.~4! to the final
regime of the Le´vy kind. As noticed in Sec. III, the emer
gence of this final condition from Eq.~20! is made by using
the mathematical approach of the Appendix, which pro
that the Fourier transform of Eq.~20! yields the genuine
Lévy process of diffusion of Eq.~15!. We note that in the
earlier work@20,40# no proper attention was devoted to th
crucial fact that the second term within the square bracke
Eq. ~20! is essential for a proper derivation of the Le´vy pro-
cesses, or of the equivalent fractional derivative.

V. CONCLUDING REMARKS

In conclusion, we have provided a convincing demons
tion of how to derive Le´vy processes from within a dynami
approach. As pointed out in an earlier work@40#, the Lévy
process corresponds to a form of fractional calculus wh
can be regarded as a form of macroscopic manifestatio
microscopic randomness. However, it seems to us that f
tional derivatives in time have a different meaning from fra
tional derivatives in space. The choice made by the auth
of Ref. @33# has the effect of relating the solution of Eq.~4!
to a form of fractional derivative in time. It seems to us th
this choice corresponds to a case where the decay of
correlation function is not originated by the sporadic act
of randomness on a single trajectory. In this latter case
shown in this paper, to obtain the correct result we are for
to make the Markov property emerge, and this is realized
adopting the trick of Eq.~25!. The assumption made by th
authors of Ref.@33#, on the contrary, seems to imply that th
decay of the correlation function is originated by a statisti
distribution over a range of initial conditions. Whether or n
this is compatible with the dichotomous nature of the dif
r-
n
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sion generator is not quite clear to us.
Should the proof be given that the relaxation of the c

relation functionFj can also be determined by statistics
well as by dynamics, with no conflict with the dichotomou
property behind Eq.~4!, we would reach the impressive con
clusion that this exact equation admits two distinct classe
solution, determined by the extra information about t
physical origin of the relaxation process. We are inclined
believe that the relaxation of a dichotomous variable c
only be compatible with the action of a sporadic randomne
Thus the emergence of the Markov property at extrem
long time is a fair reflection of the dynamical processes g
erating the Le´vy diffusion processes, not to mention the fa
that the corresponding rescaling of the central part of
distribution fits the results of the numerical calculations@20#.

It is also important to stress that the repeated action
randomness is subtly related to the possibility of establish
a connection between mechanics and thermodynamics
in the case, studied in this paper, of apparently infin
memory. The random seed is given by the fact that the
ration of the times of sojourn in the laminar region cannot
predicted. This is so because of the random injection into
laminar region from the chaotic part of the map@25#. This is
the reason why we have to introduce probabilistic argume
within the dynamical picture of the process under study. T
is also the reason why, as shown by@23#, the shape of the
density distribution of Eq.~1! can be predicted by using en
tropic arguments, provided that the nonextensive form of
tropy advocated by Tsallis@24# is used. In other words, both
the adoption of entropic arguments and the birth of Le´vy
statistics rest on the emergence of probabilistic aspects
erated by a sporadic form of randomness.

Finally, we are left with the intriguing issue of the depe
dence of all these properties on the space dimensions.
treatment of this paper has been confined to the o
dimensional case, where the crucial action of the stabi
islands pointed out by the theoretical analysis of Zaslav
@21# is correctly mirrored by the dichotomous nature of t
fluctuating variablej. We are convinced that the essence
the present treatment can be extended to the multidim
sional case, including the more realistic three-dimensio
case. However, we have to recognize that this extensio
not a trivial matter and that further research work has to
done to settle the technical problems triggered by the tw
and three-dimensional case.

APPENDIX

We define the function

Dx
aex5 (

n50

`
xn2a

G~n112a!
[Ea

x . ~A1!

This function is a generalization of the exponential functio
In turn, this generalized exponential is used to derive
following form of the generalized trigonometric function:

sina x5
Ea

ıx2Ea
2ıx

2ı
~A2!

and
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cosa x5
Ea

ıx1Ea
2ıx

2
. ~A3!

The corresponding expansions in a power series are

sina x5 (
n50

`
xn2asin@~n2a!p/2#

G~n112a!
~A4!

and

cosa x5 (
n50

`
xn2acos@~n2a!p/2#

G~n112a!
. ~A5!

Note that the functions defined in Eq.~A1! fulfill the impor-
tant relation

E xaexdx5G~11a!e2xE212a
x . ~A6!

We are now ready to address the problem raised by
~20!, namely, the evaluation of the Fourier transform of t
function 1/(TW1ux2x8u)21b. For this purpose we can us
Eq. ~A6! and we find

E
2`

1` eıkx

~a1uxu!21b
dx52 ReE

0

1` eikxdx

~a1uxu!11a
5 f ~k!.

~A7!

On the other hand,

f ~k!52E
0

1` coskx

~a1x!11a
dx

52G~2a!ukua

3FsinS p

2
~11a!1ukau D2siñaS p

2
~11a!1ukau D G ,

~A8!

wherea[WT and
in

a

q.

siñaS p

2
~11a!1ukau D5cosS p

2
~a11! D sinaukau

1sinS p

2
~a11! D cosaukau.

~A9!

We are interested in the caseka→0. Thus we use Eqs
~A4!, ~A5!, and ~A9! to evaluate the Fourier transform o
interest keeping only the leading vanishing and diverg
terms. We thus obtain

E
2`

1`

dx
exp~ ikx!

~a1uxu!(11a)

'2ukuaG~2a!FcosS pa

2 D2sinS pa

2 D ukau

2
ukau2a

G~12a!
1

ukau22a

G~32a!G . ~A10!

In conclusion, the Fourier transform of Eq.~20! yields

]

]t
ŝ~k,t !5c@ f ~k!2 f ~0!#ŝ~k,t !, ~A11!

where f (k) is given by Eq.~A8! and

c[
1

T
~m21!T(m21)W(m21)5

1

T
~m21!a(m21),

~A12!

where m215a. After some algebra we find thatf (0)
52/(aaa) and the final coefficient in front ofs(k,t) is

2 cosS pa

2 DG~2a!
aukaua

T
522 cosS pa

2 DG~12a!
aa

T
ukua.

~A13!

As a final result we get Eq.~15!.
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